Using the ionospheric response to the solar eclipse on 20 March 2015 to detect spatial structure in the solar corona.

نویسندگان

  • C J Scott
  • J Bradford
  • S A Bell
  • J Wilkinson
  • L Barnard
  • D Smith
  • S Tudor
چکیده

The total solar eclipse that occurred over the Arctic region on 20 March 2015 was seen as a partial eclipse over much of Europe. Observations of this eclipse were used to investigate the high time resolution (1 min) decay and recovery of the Earth's ionospheric E-region above the ionospheric monitoring station in Chilton, UK. At the altitude of this region (100 km), the maximum phase of the eclipse was 88.88% obscuration of the photosphere occurring at 9:29:41.5 UT. In comparison, the ionospheric response revealed a maximum obscuration of 66% (leaving a fraction, Φ, of uneclipsed radiation of 34±4%) occurring at 9:29 UT. The eclipse was re-created using data from the Solar Dynamics Observatory to estimate the fraction of radiation incident on the Earth's atmosphere throughout the eclipse from nine different emission wavelengths in the extreme ultraviolet (EUV) and X-ray spectrum. These emissions, having varying spatial distributions, were each obscured differently during the eclipse. Those wavelengths associated with coronal emissions (94, 211 and 335 Å) most closely reproduced the time varying fraction of unobscured radiation observed in the ionosphere. These results could enable historic ionospheric eclipse measurements to be interpreted in terms of the distribution of EUV and X-ray emissions on the solar disc.This article is part of the themed issue 'Atmospheric effects of solar eclipses stimulated by the 2015 UK eclipse'.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ionospheric measurements of relative coronal brightness during the total solar eclipses

Swept-frequency (1±10 MHz) ionosonde measurements were made at Helston, Cornwall (50 060N, 5 180W) during the total solar eclipse on August 11, 1999. Soundings were made every three minutes. We present a method for estimating the percentage of the ionising solar radiation which remains unobscured at any time during the eclipse by comparing the variation of the ionospheric E-layer with the behav...

متن کامل

بررسی تغییرات شدت در تاج خورشید طی خورشیدگرفتگی 20 مرداد 1378

  An experiment to search for short-period intensity oscillations in the solar corona was conducted during the total solar eclipse of August 11, 1999 in Esfahan, Iran. The intensity in the continuum, centered about 4700 Å and with a passband having a half-width of 190 Å, was recorded at a counting rate of 5 Hz using six low-noise Hamamatsu R647 photomultiplier tubes. We recorded intensity value...

متن کامل

Oscillations of a Giant Solar Tornado

Solar magnetic tornadoes are known to be one of the mass and energy transport mechanisms from the lower solar atmosphere into the upper layers of the solar corona. A bright spiral structure with two arms is observed using high-cadence EUV images of 171, 193 and 304 Ǻ channels of Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO) on 10th of July 2011 for three hours. ...

متن کامل

Long term changes in EUV and X-ray emissions from the solar corona and chromosphere as measured by the response of the Earth’s ionosphere during total solar eclipses from 1932 to 1999

Measurements of the ionospheric E region during total solar eclipses in the period 1932–1999 have been used to investigate the fraction of Extreme Ultra Violet and soft X-ray radiation, 8, that is emitted from the limb corona and chromosphere. The relative apparent sizes of the Moon and the Sun are different for each eclipse, and techniques are presented which correct the measurements and, ther...

متن کامل

Using Solar Spatial Analyst to Calculate Global Solar Radiation, 22th Region of Tehran as the Case Study

Solar Radiation is considered as an important parameter in modeling environmental, hydrologic and biophysical processes. One of the reasons that solar radiations are not extensively used in models is the problem of its measurement in different points. Solar Analyst Viewshed Algorithm makes possible calculation of the topographic effects on solar radiation at local and landscape scales. With res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 374 2077  شماره 

صفحات  -

تاریخ انتشار 2016